CFTR Expression Analysis in Human Nasal Epithelial Cells by Flow Cytometry
نویسندگان
چکیده
RATIONALE Unbiased approaches that study aberrant protein expression in primary airway epithelial cells at single cell level may profoundly improve diagnosis and understanding of airway diseases. We here present a flow cytometric procedure to study CFTR expression in human primary nasal epithelial cells from patients with Cystic Fibrosis (CF). Our novel approach may be important in monitoring of therapeutic responses, and better understanding of CF disease at the molecular level. OBJECTIVES Validation of a panel of CFTR-directed monoclonal antibodies for flow cytometry and CFTR expression analysis in nasal epithelial cells from healthy controls and CF patients. METHODS We analyzed CFTR expression in primary nasal epithelial cells at single cell level using flow cytometry. Nasal cells were stained for pan-Cytokeratin, E cadherin, and CD45 (to discriminate epithelial cells and leukocytes) in combination with intracellular staining of CFTR. Healthy individuals and CF patients were compared. MEASUREMENTS AND MAIN RESULTS We observed various cellular populations present in nasal brushings that expressed CFTR protein at different levels. Our data indicated that CF patients homozygous for F508del express varying levels of CFTR protein in nasal epithelial cells, although at a lower level than healthy controls. CONCLUSION CFTR protein is expressed in CF patients harboring F508del mutations but at lower levels than in healthy controls. Multicolor flow cytometry of nasal cells is a relatively simple procedure to analyze the composition of cellular subpopulations and protein expression at single cell level.
منابع مشابه
O-28: New Insights into the Mechanisms UnderlyingChlamydia Trachomatis Infection InducedFemale Infertility
Background: Chlamydia (C.) trachomatis is an obligate intracellular gram-negative pathogen affecting over 600 million people worldwide with 92 million new cases occurring globally each year. Genital C. trachomatis infection has been recognized as the most common cause of pelvic inflammatory disease leading to severe tubal damage, ectopic pregnancy, hydrosalpinx and infertility. However, the mec...
متن کاملApical CFTR Expression in Human Nasal Epithelium Correlates with Lung Disease in Cystic Fibrosis
INTRODUCTION Although most individuals with cystic fibrosis (CF) develop progressive obstructive lung disease, disease severity is highly variable, even for individuals with similar CFTR mutations. Measurements of chloride transport as expression of CFTR function in nasal epithelial cells correlate with pulmonary function and suggest that F508del-CFTR is expressed at the apical membrane. Howeve...
متن کاملAmniotic Mesenchymal Stem Cells: A New Source for Hepatocyte-Like Cells and Induction of CFTR Expression by Coculture with Cystic Fibrosis Airway Epithelial Cells
Cystic fibrosis (CF) is a monogenic disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, with lung and liver manifestations. Because of pitfalls of gene therapy, novel approaches for reconstitution of the airway epithelium and CFTR expression should be explored. In the present study, human amniotic mesenchymal stem cells (hAMSCs) were isolated from term placent...
متن کاملبررسی کیفی و کمی بیان پروتئین آکواپورین1 در شبکه کوروئید رت نژاد سویتار
Abstract Background: Choroid plexus (CP) is a branched structure made up of a single layer of epithelial cells and blood capillaries, forming the blood-CSF-barrier. The CSF (cerebrospinal fluid) is mainly produced from the CP. Aquaporin1 (AQP1), water channels that are highly expressed on the apical side of the membrane in choroid plexus, have a major role in mediating water transport across th...
متن کاملCystic fibrosis transmembrane conductance regulator-dependent regulation of epithelial inducible nitric oxide synthase expression.
Recent evidence has shown that the inducible form of nitric oxide (NO) synthase (NOS2) has reduced expression in airway epithelia of patients with cystic fibrosis (CF) despite the presence of chronic inflammation. The goal of this paper is to determine whether NOS2 expression is regulated by the presence of functional CF transmembrane conductance regulator (CFTR). Using a human trachea epitheli...
متن کامل